Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Heliyon ; 10(7): e29062, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601693

ABSTRACT

Background: The role of Ferroptosis in the course of sepsis-induced myopathy is yet unclear. The objective of our work is to identify key genes connected with Ferroptosis in sepsis-induced myopathy and investigate possible pharmaceutical targets related to this process. This research aims to provide new insights into the management of sepsis-induced myopathy. Methods: We got the GSE13205 dataset from the Gene Expression Omnibus (GEO) and extracted Ferroptosis-associated genes from the FerrDb database. After conducting a functional annotation analysis of these genes, we created a protein-protein interaction network using Cytoscape software to identify important genes. Subsequently, we employed CMap to investigate prospective pharmaceuticals that could target these crucial genes. Results: A total of 61 genes that are expressed differently (DEGs) have been found concerning Ferroptosis. These genes are involved in a wide range of biological functions, including reacting to signals from outside the cell and the availability of nutrients, programmed cell death, controlling apoptosis, and responding to peptides, chemical stressors, and hormones. The KEGG pathway study revealed that these pathways are involved in Ferroptosis, autophagy, P53 signaling, PI3K-Akt signaling, mTOR signaling, HIF-1 signaling, endocrine resistance, and different tumorigenic processes. In addition, we created a network that shows the simultaneous expression of important genes and determined the top 10 medications that have the potential to treat sepsis-induced myopathy. Conclusion: The bioinformatics research undertaken sheds insight into the probable role of Ferroptosis-associated genes in sepsis-induced myopathy. The identified critical genes show potential as therapeutic targets for treating sepsis-induced myopathy, offering opportunities for the development of tailored medicines.

2.
Article in English | MEDLINE | ID: mdl-38363328

ABSTRACT

PURPOSE: This meta-analysis aimed to evaluate the performance of the Injury Severity Score (ISS), Trauma and Injury Severity Score (TRISS), and the Geriatric Trauma Outcome Score (GTOS) in predicting mortality in geriatric trauma patients. METHODS: The MEDLINE, Web of Science, and EMBASE databases were searched for studies published from January 2008 to October 2023. Studies assessing the performance of the ISS, TRISS, or GTOS in predicting mortality in geriatric trauma patients (over 60 years old) and reporting data for the analysis of the pooled area under the receiver operating characteristic curve (AUROC) and the hierarchical summary receiver operating characteristic curve (HSROC) were included. Studies that were not conducted in a group of geriatric patients, did not consider mortality as the outcome variable, or had incomplete data were excluded. The Critical Appraisal Skills Programme (CASP) Clinical Prediction Rule Checklist was utilized to assess the risk of bias in included studies. STATA 16.0. was used for the AUROC analysis and HSROC analysis. RESULTS: Nineteen studies involving 118,761 geriatric trauma patients were included. The pooled AUROC of the TRISS (AUC = 0.82, 95% CI: 0.77-0.87) was higher than ISS (AUC = 0.74, 95% CI: 0.71-0.79) and GTOS (AUC = 0.80, 95%CI: 0.77-0.83). The diagnostic odds ratio (DOR) calculated from HSROC curves also suggested that the TRISS (DOR = 21.5) had a better performance in predicting mortality in geriatric trauma patients than the ISS (DOR = 6.27) and GTOS (DOR = 4.76). CONCLUSION: This meta-analysis suggested that the TRISS showed better accuracy and performance in predicting mortality in geriatric trauma patients than the ISS and GTOS.

3.
Am J Respir Cell Mol Biol ; 70(5): 351-363, 2024 May.
Article in English | MEDLINE | ID: mdl-38271683

ABSTRACT

N6-methyladenosine (m6A) plays a role in various diseases, but it has rarely been reported in acute lung injury (ALI). The FTO (fat mass and obesity-associated) protein can regulate mRNA metabolism by removing m6A residues. The aim of this study was to examine the role and mechanism of the m6A demethylase FTO in LPS-induced ALI. Lung epithelial FTO-knockout mice and FTO-knockdown/overexpression human alveolar epithelial (A549) cell lines were constructed to evaluate the effects of FTO on ALI. Bioinformatics analysis and a series of in vivo and in vitro assays were used to examine the mechanism of FTO regulation. Rescue assays were conducted to examine whether the impact of FTO on ALI depended on the TXNIP/NLRP3 pathway. In LPS-induced ALI, RNA m6A modification amounts were upregulated, and FTO expression was downregulated. In vivo, lung epithelial FTO knockout alleviated alveolar structure disorder, tissue edema, and pulmonary inflammation and improved the survival of ALI mice. In vitro, FTO knockdown reduced A549 cell damage and death induced by LPS, whereas FTO overexpression exacerbated cell damage and death. Mechanistically, bioinformatics analysis revealed that TXNIP was a downstream target of FTO. FTO deficiency mitigated pyroptosis in LPS-induced ALI via the TXNIP/NLRP3 pathway. Rescue assays confirmed that the impact of FTO on the TXNIP/NLRP3 pathway was significantly reversed by the TXNIP inhibitor SRI-37330. Deficiency of FTO alleviates LPS-induced ALI via TXNIP/NLRP3 pathway-mediated alveolar epithelial cell pyroptosis, which might be a novel therapeutic strategy for combating ALI.


Subject(s)
Acute Lung Injury , Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Alveolar Epithelial Cells , Carrier Proteins , Lipopolysaccharides , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Humans , Lipopolysaccharides/pharmacology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Pyroptosis/drug effects , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice , A549 Cells , Mice, Inbred C57BL , Thioredoxins/metabolism , Thioredoxins/genetics , Male , Signal Transduction
4.
CNS Neurosci Ther ; 30(2): e14402, 2024 02.
Article in English | MEDLINE | ID: mdl-37592823

ABSTRACT

BACKGROUND: Mechanisms underlying cognitive dysfunction following traumatic brain injury (TBI) partially due to abnormal amyloid processor protein (APP) cleavage and neural hyperactivity. Binding of the extension domain of APP (ExD17) to the GABAbR1 receptor results in reduced neural activity, which might play a role in the mechanisms of cognitive dysfunction caused by TBI. METHODS: Stretch-induced injury was utilized to establish a cell injury model in HT22 cells. The TBI model was created by striking the exposed brain tissue with a free-falling weight. Topical or intraperitoneal administration of ExD17 was performed. Cell viability was assessed through a cell counting kit-8 assay, while intracellular Ca2+ was measured using Fluo-4. Western blotting was used to investigate the expression of APP amyloidogenic cleavage proteins, GABAbR1, phospholipase C (PLC), PLCB3, and synaptic proteins. ELISA was performed to analyze the levels of Aß42. Seizures were assessed using electroencephalography (EEG). Behaviors were evaluated through the novel object recognition test, open field test, elevated plus maze test, and nest-building test. RESULTS: ExD17 improved cell viability and reduced intracellular calcium in the cell injury model. The treatment also suppressed the increased expression of APP amyloidogenic cleavage proteins and Aß42 in both cell injury and TBI models. ExD17 treatment reversed the abnormal expression of GABAbR1, GRIA2, p-PLCG1/PLCG1 ratio, and p-PLCB3/PLCB3 ratio. In addition, ExD17 treatment reduced neural activity, seizure events, and their duration in TBI. Intraperitoneal injection of ExD17 improved behavioral outcomes in the TBI mouse model. CONCLUSIONS: ExD17 treatment results in a reduction of amyloidogenic APP cleavage and neuroexcitotoxicity, ultimately leading to an improvement in the behavioral deficits observed in TBI mice.


Subject(s)
Brain Injuries, Traumatic , Cognitive Dysfunction , Mice , Animals , Amyloidogenic Proteins , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Seizures , Disease Models, Animal
5.
Int Immunopharmacol ; 127: 111377, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38104369

ABSTRACT

BACKGROUND: Immunological disorder remains a great challenge in severe poly-trauma, in which lymphopenia is an important contributor. The purpose of present study is to explore whether ferroptosis, a new manner of programmed cell death (PCD), is involved in the lymphocyte depletion and predictive to the adverse prognosis of severe injuries. PATIENTS AND METHODS: Severe polytrauma patients admitted from January 2022 to December 2022 in our trauma center were prospectively investigated. Peripheral blood samples were collected at admission (day 1), day 3 and day 7 from them. Included patients were classified based on whether they developed sepsis or not. Clinical outcomes, systematic inflammatory response, lymphocyte subpopulation, CD4 + T cell ferroptosis were collected, detected and analyzed. RESULTS: Notable lymphopenia was observed on the first day after severe trauma and failed to normalize on the 7th day if patients were complicated with sepsis, in which CD4 + T cell was the subset of lymphocyte that depleted most pronouncedly. Lymphocyte loss was significantly correlated with the acute and biphasic systemic inflammatory response. Ferroptosis participated in the death of CD4 + T cells, potentially mediated by the downregulation of xCT-GSH-GPX4 pathway. CD4 + T cells ferroptosis had a conducive predicting value for the development of sepsis following severe trauma. CONCLUSIONS: CD4 + T cells ferroptosis occurs early in the acute stage of severe polytrauma, which may become a promising biomarker and therapeutic target for post-traumatic sepsis.


Subject(s)
Ferroptosis , Lymphopenia , Multiple Trauma , Sepsis , Humans , CD4-Positive T-Lymphocytes , Multiple Trauma/complications
6.
Front Med (Lausanne) ; 10: 1249724, 2023.
Article in English | MEDLINE | ID: mdl-37692780

ABSTRACT

Background: Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PIICS) is a significant contributor to adverse long-term outcomes in severe trauma patients. Objective: The objective of this study was to establish and validate a PIICS predictive model in severe trauma patients, providing a practical tool for early clinical prediction. Patients and methods: Adult severe trauma patients with an Injury Severity Score (ISS) of ≥16, admitted between October 2020 and December 2022, were randomly divided into a training set and a validation set in a 7:3 ratio. Patients were classified into PIICS and non-PIICS groups based on diagnostic criteria. LASSO regression was used to select appropriate variables for constructing the prognostic model. A logistic regression model was developed and presented in the form of a nomogram. The performance of the model was evaluated using calibration and ROC curves. Results: A total of 215 patients were included, consisting of 155 males (72.1%) and 60 females (27.9%), with a median age of 51 years (range: 38-59). NRS2002, ISS, APACHE II, and SOFA scores were selected using LASSO regression to construct the prognostic model. The AUC of the ROC analysis for the predictive model in the validation set was 0.84 (95% CI 0.72-0.95). The Hosmer-Lemeshow test in the validation set yielded a χ2 value of 14.74, with a value of p of 0.098. Conclusion: An accurate and easily implementable PIICS risk prediction model was established. It can enhance risk stratification during hospitalization for severe trauma patients, providing a novel approach for prognostic prediction.

7.
Shock ; 60(3): 345-353, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37477437

ABSTRACT

ABSTRACT: The depletion of peripheral blood B cells is associated with immunosuppression and poor prognosis during sepsis, and selective depletion occurs when B cell subsets are specifically targeted. In this study, we examined the mechanisms underlying the selective depletion of B cell subsets in the immunosuppressive phase of septic shock patients. Thirty-two septic shock patients were recruited as a septic shock group and 10 healthy volunteers as a control group. The expression of Bcl-2, CD95, cleaved caspase-9/8, and activated caspase-3/1 in the B cell subsets were measured by flow cytometry. Another 23 septic shock patients were recruited to test the remission of caspase-3 (Z-DEVD-FMK) and caspase-1 (VX-765) inhibitors on B cell subset depletion in vitro . In septic shock patients, the Bcl-2 levels in immature/transitional (IM) B cells decreased and the levels of cleaved caspase-9 in IM B cells increased; the levels of CD95 in IM, naive, resting memory (RM), and activated memory (AM) B cells and the levels of cleaved caspase-8 in IM, RM, and AM B cells increased; the levels of activated caspase-3 and caspase-1 in IM, RM, and AM B cells increased. Activated caspase-1 levels in IM B cells were higher compared with activated caspase-3 in septic shock patients, whereas the levels of activated caspase-1 in AM B cells were lower compared with activated caspase-3. Moreover, in vitro experiments showed that Z-DEVD-FMK and VX-765 could alleviate the depletion of IM, AM, and RM B cells. The selective reduction of circulating B cell subsets in septic shock patients could be attributed to intrinsic and extrinsic apoptosis as well as pyroptosis.


Subject(s)
B-Lymphocyte Subsets , Shock, Septic , Humans , Pyroptosis , Caspase 3/metabolism , Caspase 9/metabolism , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , Caspase 1/metabolism
8.
Front Neurol ; 14: 1141973, 2023.
Article in English | MEDLINE | ID: mdl-37521294

ABSTRACT

Introduction: Repetitive transcranial magnetic stimulation (rTMS) is an effective non-invasive cortical stimulation technique in the treatment of neuropathic pain. As a new rTMS technique, intermittent theta burst stimulation (iTBS) is also effective at relieving pain. We aimed to establish the pain-relieving effectiveness of different modalities on neuropathic pain. The study was conducted in individuals with spinal cord injury (SCI) and different modalities of rTMS. Methods: Thirty-seven individuals with SCI were randomly allocated to three groups, in which the "iTBS" group received iTBS, the "rTMS" group received 10 Hz rTMS, and the "iTBS + rTMS" group received iTBS and 10 Hz rTMS successively of the primary motor cortex 5 days a week for 4 weeks, and they all underwent the full procedures. The primary outcome measure was change in the visual analog scale (VAS), and the secondary outcomes were measured using the Hamilton Rating Scale for Depression (HAM-D) and the Pittsburgh Sleep Quality Index (PSQI). All the outcomes were evaluated at 1 day before stimulation (baseline), 1 day after the first week of stimulation (S1), and 1 day after the last stimulation (S2). Results: The VAS scores showed significant pain improvement after 4 weeks of stimulation (p = 0.0396, p = 0.0396, and p = 0.0309, respectively) but not after 1 week of stimulation. HAM-D scores declined, but the decreases were not significant until 4 weeks later (p = 0.0444, p = 0.0315, and p = 0.0447, respectively). PSQI scores were also significantly decreased after 4 weeks of stimulation (p = 0.0446, p = 0.0244, and p = 0.0088, respectively). Comparing the three modalities, VAS, HAM-D, and PSQI scores at S1 showed no differences, and, at S2, VAS scores showed significant differences (p = 0.0120; multiple comparisons showed significant differences between iTBS and iTBS + rTMS, p = 0.0091), while the HAM-D and PSQI scores showed no differences. Discussion: The primary and secondary outcomes all showed significant improvement, indicating that the three different modalities were all effective at relieving the pain. However, not all the three stimulations were of same effectiveness after treatment; there were statistical differences in the treatment of neuropathic pain between iTBS as a priming stimulus and as a single procedure.

9.
Life Sci ; 330: 121948, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37467885

ABSTRACT

AIMS: To identify N-acetyltransferase 10 (NAT10) and its downstream signaling pathways in myocytes and skeletal muscle, and to investigate its role in inflammation-induced muscle atrophy. MATERIALS AND METHODS: Cecal ligation and puncture models were used to induce sepsis in C57BL/6 mice, which were treated with either a NAT10 inhibitor or a control agent. The therapeutic effect of NAT10 inhibitor was investigated by evaluating the mass, morphology, and molecular characteristics of mouse skeletal muscle. C2C12 cells were stimulated with LPS, and the expression of the NAT10 gene, downstream protein content, and atrophy phenotype were analyzed using a NAT10 inhibitor, to further explore the atrophic effect of NAT10 on C2C12 differentiated myotubes. RESULTS: Gene set enrichment analysis revealed that NAT10 expression was elevated in the Lateral femoris muscle of patients with ICUAW. In vitro and in vivo experiments showed that sepsis or LPS induced the upregulation of NAT10 expression in skeletal muscles and C2C12 myotubes. Skeletal muscle mass, tissue morphology, gene expression, and protein content were associated with atrophic response in sepsis models. Remodelin ameliorated the LPS-induced skeletal muscle weight loss, as well as muscular atrophy, and improved survival. Remodelin reversed the atrophy program that was induced by inflammation through the downregulation of the ROS/NLRP3 pathway, along with the inhibition of the expression of MuRF1 and Atrogin-1. CONCLUSION: NAT10 is closely related to skeletal muscle atrophy during sepsis. Remodelin improves the survival rate of mice by improving the systemic inflammatory response and skeletal muscle atrophy by downregulating the ROS/NLRP3 signaling pathway.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Sepsis , Animals , Mice , Inflammation/pathology , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Sepsis/metabolism
10.
Eur J Trauma Emerg Surg ; 49(4): 1959-1967, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37285034

ABSTRACT

BACKGROUND: Trauma patients are at high risk of Venous thromboembolism (VTE), but compared to well-established deep venous thrombosis (DVT), data specifically evaluating post-traumatic pulmonary embolism (PE) are scarce. The aim of this study is to assess whether PE represents a distinct clinical entity with injury pattern, risk factors, and prophylaxis strategy different from DVT, among severe poly-trauma patients. PATIENTS AND METHODS: We retrospectively enrolled patients admitted to our level I trauma center from January 2011 to December 2021 who were diagnosed with severe multiple traumatic injuries and identified thromboembolic events among them. We regarded four groups as None (without thromboembolic events), DVT only, PE only, and PE with DVT. Demographics, injury characteristics, clinical outcomes, and treatments were collected and analyzed in individual groups. Patients were also classified according to the occurring time of PE, and indicative symptoms and radiological findings were compared between early PE (≤ 3 days) and late PE (> 3 days). Logistic regression analyses were conducted to explore independent risk factors for different VTE patterns. RESULTS: Among 3498 selected severe multiple traumatic patients, there were 398 episodes of DVT only, 19 of PE only, and 63 of PE with DVT. Injury variables associated with PE only included shock on admission and severe chest trauma. Severe pelvic fracture and mechanical ventilator days (MVD) ≥ 3 were the independent risk factors for PE with DVT. There were no significant differences in the indicative symptoms and location of pulmonary thrombi between the early and late PE groups. Obesity and severe lower extremity injury might have an impact on the incidence of early PE, while patients with a severe head injury and higher ISS are particularly at risk for developing late PE. CONCLUSION: Occurring early, lacking association with DVT, and possessing distinct risk factors warrant PE in severe poly-trauma patients special attention, especially for its prophylaxis strategy.


Subject(s)
Multiple Trauma , Pulmonary Embolism , Venous Thromboembolism , Venous Thrombosis , Humans , Retrospective Studies , Venous Thrombosis/epidemiology , Venous Thrombosis/etiology , Venous Thromboembolism/prevention & control , Trauma Centers , Pulmonary Embolism/epidemiology , Pulmonary Embolism/etiology , Multiple Trauma/complications , Multiple Trauma/epidemiology , Risk Factors
11.
Biomed Pharmacother ; 163: 114837, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37156115

ABSTRACT

Sepsis is described as an immune response disorder of the host to infection in which microorganisms play a non-negligible role. Most survivors of sepsis experience ICU-acquired weakness, also known as septic myopathy, characterized by skeletal muscle atrophy, weakness, and irreparable damage/regenerated or dysfunctional. The mechanism of sepsis-induced myopathy is currently unclear. It has been believed that this state is triggered by circulating pathogens and their related harmful factors, leading to impaired muscle metabolism. Sepsis and its resulting alterations in the intestinal microbiota are associated with sepsis-related organ dysfunction, including skeletal muscle wasting. There are also some studies on interventions targeting the flora, including fecal microbiota transplants, the addition of dietary fiber and probiotics in enteral feeding products, etc., aiming to improve sepsis-related myopathy. In this review, we critically assess the potential mechanisms and therapeutic prospects of intestinal flora in the development of septic myopathy.


Subject(s)
Gastrointestinal Microbiome , Muscular Diseases , Sepsis , Humans , Muscular Diseases/etiology , Muscular Diseases/therapy , Muscle, Skeletal/metabolism , Muscular Atrophy/pathology , Sepsis/metabolism
12.
J Immunol Res ; 2023: 7408967, 2023.
Article in English | MEDLINE | ID: mdl-37128298

ABSTRACT

Sepsis is a life-threatening yet common disease, still posing high mortality worldwide. Sepsis-related deaths primarily occur during immunosuppression; the disease can hamper the numbers and function of B cells, which mediate innate and adaptive immune responses to maintain immune homeostasis. Dysfunction of B cells, along with aggravated immunosuppression, are closely related to poor prognosis. However, B cells in patients with sepsis have garnered little attention. This article focuses on the significance of B-cell subsets, including regulatory B cells, in sepsis and how the counts and function of circulating B cells are affected in patients with sepsis. Finally, potential B-cell-related immunotherapies for sepsis are explored.


Subject(s)
B-Lymphocytes, Regulatory , Sepsis , Humans , Immunosuppression Therapy , Immune Tolerance
13.
Brain Sci ; 13(3)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36979288

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a common complication of sepsis, which is a life-threatening condition resulting from a dysregulated host response to infection. Pyroptosis, a pro-inflammatory mode of lytic cell death mediated by GSDMD (Gasdermin D), is involved in the pathogenesis of SAE. While autophagy has been extensively studied in SAE, the role of nuclear autophagy is not yet well understood. In this study, we aimed to investigate the involvement of pyroptosis and neural nuclear autophagy in the pathogenesis of SAE. We analyzed a CLP (cecal ligation and puncture)-induced SAE model in wild-type and GSDMD-/- mice to gain insights into the underlying mechanisms. Here, we show that in sepsis, neural nuclear autophagy is extremely activated, and nuclear LaminB decreases and is accompanied by an increase in the ratio of LC3BII/I. These effects can be reversed in GSDMD-/- mice. The behavioral outcomes of septic wild-type mice are impaired by the evidence from the novel object recognition test (NORT) and open field test (OFT), but are improved in septic GSDMD-/- mice. In conclusion, our study demonstrates the activation of neural nuclear autophagy in SAE. The absence of GSDMD inhibits nuclear autophagy and improves the behavioral outcomes of SAE.

14.
Biomed Pharmacother ; 158: 114209, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36916434

ABSTRACT

Septic myopathy, also known as ICU acquired weakness (ICU-AW), is a characteristic clinical symptom of patients with sepsis, mainly manifested as skeletal muscle weakness and muscular atrophy, which affects the respiratory and motor systems of patients, reduces the quality of life, and even threatens the survival of patients. Melatonin is one of the hormones secreted by the pineal gland. Previous studies have found that melatonin has anti-inflammatory, free radical scavenging, antioxidant stress, autophagic lysosome regulation, mitochondrial protection, and other multiple biological functions and plays a protective role in sepsis-related multiple organ dysfunction. Given the results of previous studies, we believe that melatonin may play an excellent regulatory role in the repair and regeneration of skeletal muscle atrophy in septic myopathy. Melatonin, as an over-the-counter drug, has the potential to be an early, complementary treatment for clinical trials. Based on previous research results, this article aims to critically discuss and review the effects of melatonin on sepsis and skeletal muscle depletion.


Subject(s)
Melatonin , Muscular Diseases , Sepsis , Humans , Melatonin/therapeutic use , Quality of Life , Muscular Diseases/drug therapy , Muscle, Skeletal/pathology , Sepsis/drug therapy , Sepsis/pathology , Muscular Atrophy/pathology
15.
Front Immunol ; 14: 1126874, 2023.
Article in English | MEDLINE | ID: mdl-36845110

ABSTRACT

This study aims to investigate the early changes in the immune systems of patients with septic shock. A total of 243 patients with septic shock were included in this study. The patients were classified as survivors (n = 101) or nonsurvivors (n = 142). Clinical laboratories perform tests of the immune system's function. Each indicator was studied alongside healthy controls (n = 20) of the same age and gender as the patients. A comparative analysis of every two groups was conducted. Univariate and multivariate logistic regression analyses were performed to identify mortality risk factors that are independent of one another. In septic shock patients, neutrophil counts, infection biomarkers (C-reactive protein, ferritin, and procalcitonin levels), and cytokines (IL-1ß, IL-2R, IL-6, IL-8, IL-10, and TNF-α) increased significantly. Lymphocyte and their subset counts (T, CD4+ T, CD8+ T, B, and natural killer cell counts), lymphocyte subset functions (the proportions of PMA/ionomycin-stimulated IFN-γ positive cells in CD4+ T cells), immunoglobulin levels (IgA, IgG, and IgM), and complement protein levels (C3 and C4) decreased significantly. Compared to survivors, nonsurvivors had higher levels of cytokines (IL-6, IL-8, and IL-10) but lower levels of IgM, complement C3 and C4, and lymphocyte, CD4+, and CD8+ T cell counts. Low IgM or C3 concentrations and low lymphocyte or CD4+ T cell counts were independent risk factors for mortality. These alterations should be considered in the future development of immunotherapies aimed at treating septic shock.


Subject(s)
Shock, Septic , Humans , Interleukin-10 , Interleukin-6/metabolism , Interleukin-8 , Cytokines , Immune System/metabolism , Immunoglobulin M
16.
Int Immunopharmacol ; 117: 109779, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36806038

ABSTRACT

OBJECTIVE: DDX3X is involved in various pathological processes such as infection, immunity and cell death. This study aimed to investigate the effect of RK-33, a specific inhibitor of DDX3X, on the progression of sepsis to persistent inflammation, immune suppression and catabolism syndrome(PICS). METHODS: The septic mice model was established using caecal ligation and perforation (CLP). The mice were randomly divided into four groups: sham group, sham + RK-33 group (20 mg/kg, intraperitoneal injection, once a day), CLP group and CLP + RK-33 group (20 mg/kg, intraperitoneal injection, once a day). The number of inflammatory cells in the peripheral blood, spleen and bone marrow was calculated, and inflammatory cytokines were detected using an enzyme-linked immunosorbent assay. The septic mice's body weight and skeletal muscle mass were measured, and skeletal muscle tissues were examined using eosin staining. Western blotting was performed to detect the expression levels of MuRF1, atrogin1 and NLRP3 in the skeletal muscle of septic mice. Additionally, reactive oxidative species, superoxide dismutase and malondialdehyde were measured using commercial kits. RESULTS: RK-33 reduced inflammatory cell counts and cytokine levels in CLP mice, ameliorated the decline in CD4 and CD8 T cells and prevented the loss of body weight and skeletal muscle mass in septic mice. Additionally, RX-33 reduced oxidative stress in the skeletal muscle of septic mice. CONCLUSION: In the established sepsis mouse model, RK-33 alleviated inflammation and oxidative stress, ameliorated CLP-induced immunosuppression and skeletal muscle atrophy and improved survival. These findings suggest that RK-33 could be a novel potential therapeutic agent for preventing the progression of sepsis to PICS.


Subject(s)
Sepsis , Mice , Animals , Inflammation/drug therapy , Oxidative Stress , Cytokines/metabolism , Immunosuppression Therapy , Mice, Inbred C57BL , DEAD-box RNA Helicases/metabolism
17.
Mol Immunol ; 154: 54-60, 2023 02.
Article in English | MEDLINE | ID: mdl-36603305

ABSTRACT

Over-expression of DDX3X mRNA is associated with T cell loss in septic patients. This study aimed to investigate the molecular mechanism of DDX3X on T cell reduction in sepsis. The sepsis model was established using lipopolysaccharide stimulation in vitro and cecal ligation and puncture (CLP) surgery in vivo. Results showed that the expression of DDX3X was significantly upregulated in CD4+ T cells in sepsis. RK-33, the inhibitor of DDX3X, was found to dramatically increase CD4+ T cell counts and prolong the survival rate of mice with sepsis. The results also showed that the expression of caspase-1/GSDMD in CD4+ T cells was significantly increased in vitro and in vivo, and RK-33 can substantially reduce CD4+ T cell pyroptosis through inhibiting NLRP3/caspase-1/GSDMD. Globally, our results suggest that DDX3X is involved in the loss of CD4+ T cells partly through activating the pyroptotic pathway during sepsis, which may provide potential targets for therapeutic interventions in this highly lethal disease.


Subject(s)
Pyroptosis , Sepsis , Mice , Animals , Sepsis/metabolism , Caspase 1/metabolism , T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , DEAD-box RNA Helicases/genetics
18.
Front Immunol ; 13: 1035709, 2022.
Article in English | MEDLINE | ID: mdl-36405697

ABSTRACT

Skeletal muscle atrophy is a common complication in survivors of sepsis, which affects the respiratory and motor functions of patients, thus severely impacting their quality of life and long-term survival. Although several advances have been made in investigations on the pathogenetic mechanism of sepsis-induced skeletal muscle atrophy, the underlying mechanisms remain unclear. Findings from recent studies suggest that the nucleotide-binding and oligomerisation domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, a regulator of inflammation, may be crucial in the development of skeletal muscle atrophy. NLRP3 inhibitors contribute to the inhibition of catabolic processes, skeletal muscle atrophy and cachexia-induced inflammation. Here, we review the mechanisms by which NLRP3 mediates these responses and analyse how NLRP3 affects muscle wasting during inflammation.


Subject(s)
Inflammasomes , Sepsis , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Quality of Life , Muscular Atrophy/etiology , Inflammation , Muscle, Skeletal/metabolism , Sepsis/complications
19.
Mol Immunol ; 152: 232-239, 2022 12.
Article in English | MEDLINE | ID: mdl-36379131

ABSTRACT

Acute lung injury is a severe complication of sepsis with high mortality in ICU. Increasing evidences have showed that Ibrutinib, a Bruton's Tyrosine kinase inhibitor, plays a critical role in numerous inflammation-related diseases. However, its therapeutic effect and mechanism in sepsis induced acute lung injury remain unclear. In this study, cecal ligation puncture (CLP) was performed on male C57BL/6 J mice to establish a mouse model of sepsis. Ibrutinib (50 mg/kg/d) was administered by gavage 1 day before CLP, once a day, for 3 consecutive days. on the fourth day mice were given one dose of ibrutinib 2 h before CLP induction, and another dose was given 24 h later. Histopathological examination of lung tissues was performed at 72 h. The levels of myeloperoxidase (MPO), interleukin (IL)- 6, TNF-α, IL-1ß and IL-18 in bronchoalveolar lavage fluid (BALF) were determined by ELISA. Western blotting was used to detect the expression of pyroptosis related proteins. The results showed that Ibrutinib treatment significantly improved the prognosis of mice and mitigated the lung histopathological injury and inflammatory response. Moreover, Ibrutinib significantly inhibited the expression of pyroptosis related proteins (NLRP3, Caspase-1, Gasdermin D (GSDMD), IL-1ß and IL-18) in the lung tissues of sepsis mice. In conclusion, our results suggest that Ibrutinib exerted protective effects against lung injury of septic mice and inhibited the activation of pyroptosis in lung tissue, which may be a potential treatment for sepsis induced lung injury.


Subject(s)
Acute Lung Injury , Sepsis , Animals , Mice , Male , Caspase 1 , NLR Family, Pyrin Domain-Containing 3 Protein , Interleukin-18 , Mice, Inbred C57BL , Acute Lung Injury/drug therapy , Acute Lung Injury/complications , Disease Models, Animal , Sepsis/complications , Interleukin-6
20.
Cytokine ; 157: 155959, 2022 09.
Article in English | MEDLINE | ID: mdl-35816926

ABSTRACT

BACKGROUND: Serious trauma due to various factors is a major global public issue, and sepsis is a major cause of trauma-associated mortality. Timely diagnosis and suitable treatment of post-traumatic sepsis are crucial to improve the hospital outcome of traumatic patients. IL-28 is a newly discovered member of IFN-λ family with multiple functions in inflammatory response. To date, its role in the pathogenic mechanisms of post-traumatic sepsis still remains unknown. METHODS: In total, 20 healthy controls, 55 traumatic patients without sepsis and 54 traumatic patients with sepsis were enrolled in this study. Serum IL-28A/B levels were investigated by ELISA. RESULTS: IL-28A/B levels were significantly increased in traumatic patients compared to healthy volunteers. Moreover, septic trauma patients displayed a significant increase in IL-28A/B levels compared with non-septic patients. In septic patients, IL-28A/B were negatively correlated with IFN-γ, IL-5, IL-13 and IL-17, and positively associated with IL-10. Moreover, IL-28A (AUC: 0.821, 95 %CI: 0.693-0.949) and IL-28B (AUC: 0.811, 95 %CI: 0.691-0.931) were both beneficial to predict increased mortality risk in septic trauma patients, though there was no statistical difference in the predictive value between them. CONCLUSIONS: Early serum levels of IL-28A/B were associated with the development of post-trauma sepsis and could be applied to assess the outcome of traumatic patients with sepsis. Thus, IL-28 may be a potential indicator for post-traumatic sepsis.


Subject(s)
Interferons/blood , Interleukins/blood , Sepsis , Biomarkers , Cytokines , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...